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Theory of exciton fine structure in semiconductor quantum dots and its dependence on quantum-dot aniso-
tropy and external lateral electric field is presented. The effective exciton Hamiltonian including long-range
electron-hole exchange interaction is derived within the k · p effective-mass approximation. The exchange
matrix elements of the Hamiltonian are expressed explicitly in terms of electron and hole envelope functions.
The matrix element responsible for the “bright” exciton splitting is identified and analyzed. An excitonic fine
structure for a model quantum dot with quasi-two-dimensional anisotropic harmonic oscillator confining po-
tential is analyzed as a function of the shape anisotropy, size, and applied lateral electric field.
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I. INTRODUCTION

One of the promising applications1,2 of semiconductor
quantum dots �QDs� �Refs. 3 and 4� for quantum cryptogra-
phy is the generation of entangled photon pairs �EPPs� on
demand.5–8 EPPs can be generated with great efficiency via
the biexciton cascade process �BCP� �Ref. 1� in which a
biexciton radiatively decays into the ground state via two
different indistinguishable paths involving two intermediate
dipole-active �bright� exciton states. The major barrier to
EPPs generation in BCP is the splitting of the intermediate
“bright” exciton levels which distinguishes the paths of ra-
diative decay and, as a result, destroys the entanglement. The
splitting and mixing of the two bright exciton states is con-
trolled by the long-ranged electron-hole exchange �LRE� in-
teraction and depends on dot asymmetry and applied mag-
netic field.6,8–10 Lateral electric fields have been applied in
the hope to control the dot anisotropy and hence anisotropic
exchange splitting.11–13

Better understanding of the electron-hole exchange inter-
action in QDs, particularly its LRE part, should help in the
development of EPP generation schemes.

The exchange integral can be decomposed in real space
into long-range part, i.e., exchange interaction between two
“transition densities” localized in two different Wigner-Seitz
�WS� cells and short-range part, i.e., exchange interaction
within a single WS cell. A closely related decomposition of
exchange into analytical and nonanalytical part exists in the
reciprocal space. In what follows, we will use the “real
space” definition of long-range and short-range exchange
�SRE�. We will reserve the use of words “local exchange”
and “nonlocal exchange” to describe the type of integrals
which contribute to the exchange matrix elements.

LRE electron-hole interaction in bulk semiconductors was
investigated almost 40 years ago14–16 and it is now well es-
tablished that LRE splits the energy levels of bright excitons.
For example, in zinc-blende direct band-gap semiconductors
with fourfold-degenerate valence band �8v and twofold-
degenerate conduction band �6c, the ground-state exciton is
eightfold degenerate. The addition of SRE interaction into
the excitonic Hamiltonian will split the eightfold-degenerate
ground state into “dark” and bright multiplets with degenera-

cies of five and three. The addition of LRE interaction will
further modify the fine structure by splitting threefold-
degenerate bright exciton level into two transverse excitons
with Jz= �1 and one longitudinal exciton with Jz=0.

Recent advances in single QD spectroscopies motivated
reexamination of electron-hole exchange in systems with re-
duced dimensionality within the framework of envelope
function approximation17–23 and, more recently, from the
point of view of atomistic empirical pseudopotential and
tight-binding approximation.24–28

Within the envelope function approximation,
Takagahara17 have shown that if the electron-hole pair enve-
lope contains only Y00�� ,�� angular momentum component,
then the long-range part of the electron-hole exchange van-
ishes. In Refs. 18 and 20, fine structure of localized exciton
levels in quantum wells was considered. Efros et al.19 and
Gupalov et al.22 investigated band-edge excitonic fine struc-
ture of spherical CdSe nanocrystals. In Ref. 21, Takagahara
derived effective eight-band excitonic Hamiltonian which
takes into account electron-hole exchange interaction. In par-
ticular, within the envelope function formalism of Refs. 17
and 21, LRE is a dipole-dipole interaction. Takagahara21 ap-
plied his scheme to investigate excitonic fine structure of
disklike GaAs/AlGaAs QDs as a function of QD anisotropy
and size. It was demonstrated numerically in Ref. 21 that
LRE vanishes for the ground-state bright exciton doublet in
QDs with rotationally symmetric three-dimensional confin-
ing potential. A similar to that of Ref. 21 representation of
the electron-hole exchange was discussed by Maialle et al.18

in connection with the exciton spin dynamics in quantum
wells.

Within atomistic empirical approach it has been demon-
strated that the physical origin of long-range exchange inter-
action might be different from that of bulk24 and that LRE
has a nonvanishing magnitude even in “shape-symmetric”
dots.26,27 The former and the latter stem from the loss of
local orthogonality on the unit-cell scale between electron
and hole single-particle orbitals compared to the bulk case
and “reduced” symmetry of the atomistic confining potential,
respectively. For �6��7 exciton, Gupalov et al.25 identified
the dipole-dipole and monopole-monopole contributions to
the LRE with the intra-atomic and interatomic transition den-
sities, respectively.
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In this work, we will reexamine electron-hole exchange
within the framework of envelope approximation. We note
that Takagahara’s condition17 for the vanishing of LRE in
spherically symmetric quantum dots constitutes only a
sufficient condition for quenching of LRE. It does not ex-
plain, for example, why LRE vanishes in disklike QDs with
rotational �C�v� symmetry. These QDs are “squeezed” in one
direction and the ground-state envelopes of single-particle
states will contain angular momentum components that are
higher than Y00�� ,��. Motivated by recent experiments, we
will investigate, within our model, the effects of the external
electric field and size scaling of LRE interaction.

We derive here effective “four-band” excitonic Hamil-
tonian which includes effects of LRE interaction. The ele-
ments of the effective Hamiltonian are expressed explicitly
in terms of envelope functions. The “microscopic parts” of
single-particle orbitals are integrated out and enter the effec-
tive Hamiltonian as numerical parameters. The number of
bands is truncated to two conduction and two valence bands
for the simplicity of the interpretation. We present explicit
expression for the matrix element responsible for the bright
exciton splitting and, therefore, establish a new sufficient
condition for LRE quenching.

An excitonic fine structure for a model system in which
the confining potential has a form of two-dimensional-like
anisotropic harmonic oscillator �2DLAHO� is considered as
a function of lateral anisotropy. We present an explicit ex-
pression for the bright splitting of excitonic ground state as a
function of lateral anisotropy. It is found, in agreement with
previous work,21 that, within the envelope approximation,
the bright ground-state exciton splitting vanishes in the case
of laterally isotropic confining potential. The quenching of
bright exciton splitting coincides with vanishing of the ma-
trix element responsible for the bright exciton splitting in our
effective Hamiltonian.

We also analyze the effect of the lateral electric field on
the excitonic fine structure of our model quantum dot. We
find that the bright exciton splitting decreases due to the
spatial separation of electron and hole envelopes.

Finally, the scaling of the bright exciton splittings with
system’s size is analyzed. It is found that the scaling of
bright exciton splittings differ from the laws established us-
ing simple dimensionality arguments.

Effective units of length and energy are used throughout
unless otherwise specified. The lengths are measured
in effective Bohr’s aeB=��2 / �m�e2�, where � is dielectric
constant and m� is the conduction-band effective mass.
Energies are measured in effective Hartree’s, 1 hartree
=m�e4 / ����2=2 Ry�. For example, using material param-
eters for GaAs, aeB=97.9 Å and 1 hartree=11.86 meV.

II. THEORY OF EXCITON FINE STRUCTURE IN
ENVELOPE FUNCTION APPROXIMATION

We now describe the single-particle states and the exciton
fine structure in the envelope function approximation. The
single-particle orbitals of the electron in a quantum dot are
two-component spinors �two-row columns� written as

��r� = ��a�r�
�b�r�

� = �a�r��	� + �b�r��
� ,

�	� = �1

0
�, �
� = �0

1
� . �1�

A dagger sign † will denote complex conjugation for com-
plex quantities.

With c† and h† �c and h� electron and hole creation �an-
nihilation� operators, the interacting electron-hole Hamil-
tonian can be written as

ĤX = Ĥe + Ĥh + Ĥint, Ĥe = �
i

�i
eci

†ci, Ĥh = �
j

� j
hhj

†hj ,

Ĥint = �
ijkl

ci
†hj

†hkcl�−
1

�
Vikjl

C + Viklj
E � ,

Vijkl = V�i, j ;k,l� =� � dr1dr2
�i

†�r1�� j
†�r2��k�r2��l�r1�
�r1 − r2�

,

�2�

where Ĥe, Ĥh, and Ĥint are electron, hole, and electron-hole
interaction Hamiltonian, respectively. The electron-hole in-
teraction Hamiltonian consists of two parts: VC /� is the di-
rect electron-hole Coulomb attraction screened by static di-
electric constant � and VE is the electron-hole exchange
interaction. The question of screening of electron-hole ex-
change is a subtle one and it is generally agreed that, at least,
parts of the electron-hole exchange should be screened. In
Ref. 29 �page 252�, the long-range electron-hole exchange
interaction in reciprocal space is screened by the high-
frequency dielectric constant. We will assume, for now, that
our exchange interaction VE contains screening implicitly.

To obtain excitonic states, Hamiltonian �2� is diagonalized
in the basis of all electron-hole pairs of the type c†h†�g .s.�,
where �g .s.� denotes a many-body state with fully occupied
valence and empty conduction bands.

In this work, the hole and electron single-particle states
are computed in the effective-mass approximation �EMA�
�Refs. 29 and 30� which neglects band coupling in the single-
particle states. In EMA, the hole �h and electron �e single-
particle states are uniquely specified by band label �valence
vjz� and conduction c��� and envelop index �r and p�, for
example,

�h�r� = Fvjz�
r �r�uvjz�

�r� ,

�e�r� = Fc��
p �r�uc���r� . �3�

Here, u�r� is the periodic part of Bloch eigenstate at k=0. In
what follows, u�r� is a two-component spinor. We will as-
sume that “bra” electron-hole pair is described by indices
c�s and vjzq, respectively.

The excitonic Hamiltonian matrix element in the basis of
electron-hole pairs is
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	g . s .�hvjzq
cc�sĤXcc��p

† hvjz�r
† �g . s .�

= 
vjzq,vjz�r
c�s,c��p��vjzq
h + �c�s

e �

− VC�c�s,vjz�r;vjzq,c��p�/�

+ VE�c�s,vjz�r;c��p,vjzq� . �4�

The effective Hamiltonian which involves only envelope
functions is obtained by integrating out “microscopic” de-
grees of freedom �u�. The derivation follows that of Ref. 21.
Assuming Td symmetry of the crystal, two conduction-band
microscopic functions �c1 /2� and �c−1 /2� with spin projec-
tions sz=1 /2 and sz=−1 /2 are written as

uc1/2�r� = 	r�c1/2� = �s�r��Y00�r̂�
0

� ,

uc−1/2�r� = 	r�c − 1/2� = �s�r�� 0

Y00�r̂�
� . �5�

In Eq. �5�, we assumed that microscopic conduction-band
function are of pure s symmetry.

Two valence-band microscopic functions �v−3 /2� and
�v+3 /2� with hole angular momentum projections jz=−3 /2
and jz=3 /2 are taken as

uv−3/2�r� = 	r�v − 3/2� = �p�r��Y11�r̂�
0

� ,

uv+3/2�r� = 	r�v + 3/2� = �p�r�� 0

Y1−1�r̂�
� . �6�

In Eq. �6� we assumed that microscopic valence-band func-
tions are of pure p symmetry. The eigenfunctions of angular
momentum �p�r�Y11�r̂� and �p�r�Y1−1�r̂� can be expressed in
terms of Cartesian functions px and py. We, therefore, are
neglecting pz contribution to the microscopic valence-band
functions.

In what follows, we give a brief derivation of the effective
excitonic Hamiltonian.

A. Calculation of Coulomb direct matrix elements

The unscreened Coulomb direct matrix element is given
by

VC�c�s,vjz�r;vjzq,c��p� =� � dr1dr2
q1�r1�q2�r2�

�r1 − r2�
,

q1�r1� = Fc�
s† �r1�uc�

† �r1�Fc��
p �r1�uc���r1� ,

q2�r2� = Fvjz�
r† �r2�uvjz�

† �r2�Fvjz
q �r2�uvjz

�r2� , �7�

where we explicitly presented electron and hole single-
particle orbitals as a product of an envelope F and a micro-
scopic part u. The unscreened Coulomb attraction matrix el-
ement is just Coulomb interaction between two transition
densities, where each “transition density” is a product of two

electron orbitals or two valence orbitals. The matrix element
is approximated as

VC�c�s,vjz�r;vjzq,c��p�

= 
c�c��
vjzvjz�� � dr1dr2

�
Fc�

s† �r1�Fc��
p �r1�Fv��

r† �r2�Fv�
q �r2�

�r1 − r2�
. �8�

B. Calculation of Coulomb exchange matrix elements

The exchange matrix element can be written as

VE�c�s,vjz�r;c��p,vjzq� =� � dr1dr2
q1�r1�q2�r2�

�r1 − r2�
,

q1�r1� = Fc�
s† �r1�uc�

† �r1�Fvjz
q �r1�uvjz

�r1� ,

q2�r2� = Fc��
p �r2�uc���r2�Fvjz�

r† �r2�uvjz�
† �r2� . �9�

The exchange matrix element can be thought of as a Cou-
lomb interaction of two transition densities, where each tran-
sition density is a product of electron-hole single-particle
orbitals.

We decompose exchange integral 
Eq. �9�� into the short-
range and long-range contributions in real space. We will
refer to the whole integration region as Born-von Karmen
cell �BvK cell� and to the individual unit cell within BvK cell
as WS cell. The double integration over BvK cell �which
consists of Ncell WS cells� is replaced by Ncell�Ncell inte-
grals over WS cells,

�
r1�BvK

�
r2�BvK

dr1dr2

→ �
i=1

Ncell �
r1�WS�Ri�

�
r2�WS�Ri�

dr1dr2

+ �
i,j=1

i�j

Ncell �
r1�WS�Ri�

�
r2�WS�Rj�

dr1dr2, �10�

where Ri and R j label positions of the WS cells. The first
term in Eq. �10� consists of Ncell integrals in which r1 and r2
go over the same cell whereas the second term consists of
Ncell� �Ncell−1� integrals in which r1 and r2 go over two
distinct WS cells. The first sum in which r1 and r2 go over
the same cell is the short-range exchange VSR

E whereas the
second sum in which r1 and r2 go over two different WS
cells is the long-range exchange VLR

E .
The “effective” expression for the exchange matrix ele-

ments in terms of envelop functions is obtained in a way
which follows “standard” k ·p derivation, the only difference
is the nature of microscopic integrals to be parameterized.
One postulates the “slowly varying nature” of envelop func-
tions and factors them out of the integral expression. For
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example, the short-range exchange matrix element is ex-
pressed as

VSR
E �c�s,vjz�r;c��p,vjzq�

= �
i=1

Ncell

Fc�
s† �Ri�Fvjz

q �Ri�Fc��
p �Ri�Fvjz�

r† �Ri�

�ISR�c�,vjz�;c��,vjz� , �11�

where microscopic integral

ISR�c�,vjz�;c��,vjz� = �
r1�WS�Ri�

�
r2�WS�Ri�

dr1dr2

�
uc�

† �r1�uvjz�
† �r2�uc���r2�uvjz

�r1�

�r1 − r2�
�12�

depends only on band labels. In the case of long-range ex-
change, the expression for VSR

E �c�s ,vjz�r ;c��p ,vjzq� in-
volves the sum over Ncell� �Ncell−1� cells and the micro-
scopic integral is over two distinct WS cells referenced by
vectors Ri and R j,

ILR�c�,vjz�;c��,vjz� = �
r1�WS�Ri�

�
r2�WS�Rj�

dr1dr2

�
uc�

† �r1�uvjz�
† �r2�uc���r2�uvjz

�r1�

�r1 − r2�
.

�13�

Then, with the help of the truncated multipole expansion

1/�r1 − r2� =
4�

r�

Y00��1,�1�Y00
† ��2,�2�

+
4�r�

3r�
2 �

m=−1

1

Y1m��1,�1�Y1m
† ��2,�2� ,

r� = min�r1,r2�, r� = max�r1,r2� , �14�

one evaluates microscopic ISR and ILR integrals and, effec-
tively, parameterizes the short-range and long-range ex-
change interactions. The higher-multipole contributions are
zero due to the postulated s and p symmetries of the micro-
scopic functions. As a result of this procedure, we obtain the
following “master” expression for the exchange matrix ele-
ment:

VE�c�s,vjz�r;c��p,vjzq�

= VSR
E �c�s,vjz�r;c��p,vjzq� + VLR

E �c�s,vjz�r;c��p,vjzq� ,

VSR
E �c�s,vjz�r;c��p,vjzq�

= ESR�HSR
int�c��,vjz�

c�,vjz � drFc�
s† �r�Fvjz

q �r�Fc��
p �r�Fvjz�

r† �r� ,

VLR
E �c�s,vjz�r;c��p,vjzq�

= −
4�

3
�2
�dc�vjz

0 �† · dc��vjz�
0 �

�� drFc�
s† �r�Fvjz

q �r�Fc��
p �r�Fvjz�

r† �r�

− �2 �
�,
=1

3

�dc�vjz
0 ��

†�dc��vjz�
0 �
� � � �2Fc�

s† �r1�Fvjz
q �r1�

�r1
� � r1


 

�

Fc��
p �r2�Fvjz�

r† �r2�

�r1 − r2�
dr1dr2, �15�

where ESR and �2 are two numerical constants parameteriz-
ing short-range and long-range exchange interactions, re-
spectively, �HSR

int�c��,vjz�
c�,vjz is an element of short-range exchange

microscopic matrix,

HSR
int =�

�c��,vjz�� �c��,vjz�� �c��,vjz�� �c��,vjz��

�1

2
,−

3

2
� �1

2
,
3

2
� �−

1

2
,−

3

2
� �−

1

2
,+

3

2
�

�c�,vjz� �1

2
,−

3

2
� 1 0 0 0

�c�,vjz� �1

2
,+

3

2
� 0 0 0 0

�c�,vjz� �−
1

2
,−

3

2
� 0 0 0 0

�c�,vjz� �−
1

2
,+

3

2
� 0 0 0 1

� �16�

and dc�vjz
0 are microscopic dipole elements,
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�dc�vjz
0 �x �dc�vjz

0 �y �dc�vjz
0 �z

�c�,vjz� �1

2
,−

3

2
� − 1 − i 0

�c�,vjz� �1

2
,+

3

2
� 0 0 0

�c�,vjz� �−
1

2
,−

3

2
� 0 0 0

�c�,vjz� �−
1

2
,+

3

2
� 1 − i 0.

. �17�

The numerical parameters ESR and �2 can be determined as to reproduce the excitonic fine structure in bulk semiconductors
and, therefore, implicitly contain screening effects.

Taking into account Eqs. �16� and �17�, a “block” Hamiltonian corresponding to the exchange interaction between two
electron-hole pairs Fc

pFv
r and Fc

sFv
q can be presented in the form

�
�c��,vjz�� �c��,vjz�� �c��,vjz�� �c��,vjz��

�1

2
,−

3

2
� �1

2
,+

3

2
� �−

1

2
,−

3

2
� �−

1

2
,+

3

2
�

�c�,vjz� �1

2
,−

3

2
� 
0

SRE,L + 
0
LRE,L + 
0

LRE,N 0 0 
12
LRE,N

�c�,vjz� �1

2
,+

3

2
� 0 0 0 0

�c�,vjz� �−
1

2
,−

3

2
� 0 0 0 0

�c�,vjz� �−
1

2
,+

3

2
� 
21

LRE,N 0 0 
0
SRE,L + 
0

LRE,L + 
0
LRE,N

� , �18�

where we separated different contributions to the exchange
based on their origin �SRE or LRE� and integral type �“lo-
cal” and “nonlocal”�. The contributions are


0
SRE,L = ESR� drFc

s†�r�Fv
q�r�Fc

p�r�Fv
r†�r� ,


0
LRE,L = −

8��2

3
� drFc

s†�r�Fv
q�r�Fc

p�r�Fv
r†�r� ,


0
LRE,N = − �2�Rxx + Ryy� ,


12
LRE,N = VLR

E �1/2s,3/2r;− 1/2p,− 3/2q�

= �2�Rxx − 2iRxy − Ryy� ,


21
LRE,N = VLR

E �− 1/2s,− 3/2r;1/2p,3/2q�

= �2�Rxx + 2iRxy − Ryy� ,

R
� =� � �� �2

�r1

 � r1

��Fc
s†Fv

q�Fc
p�r2�Fv

r†�r2�
�r1 − r2�

dr1dr2.

�19�

With regard to the above exchange expressions we note
the following: �a� the short-range exchange causes splitting
between bright �� 1

2 ,− 3
2 � , �− 1

2 ,+ 3
2 �� and dark doublets

�� 1
2 ,+ 3

2 � , �− 1
2 ,− 3

2 �� by moving bright doublet up in energy by

0

SRE,L. SRE does not split the bright doublet. The integral
describing SRE is local in nature and involves overlap be-
tween two electron-hole pairs. �b� Long-range exchange con-
tains expressions of two types: a local term 
0

LRE,L which
arises from �2
�dc�v�

0 �† ·dc��v��
0 � and nonlocal terms 
0

LRE,N,

12

LRE,N, and 
21
LRE,N which involve differentiation operators

applied to electron-hole pair envelopes. The nonlocal terms
describe dipole-dipole interaction between electron-hole
transition densities. �c� The splitting between bright-dark
states is affected by LRE through the local LRE term 
0

LRE,L

and nonlocal LRE term 
0
LRE,N. LRE, in general, splits the

bright doublet by coupling electron-hole pairs with “com-
pletely opposite” z projections of angular momentum, for
example, �− 1

2 , 3
2 � and � 1

2 ,− 3
2 �. The terms which are respon-

sible for the bright exciton splitting are 
12
LRE,N and


21
LRE,N—the nonlocal expressions arising from long-range

exchange interaction. �d� The splitting within the dark dou-
blet is not described in our model.

The splitting of bright exciton levels vanishes provided
that 
12

LRE,N and 
21
LRE,N vanish which constitutes a condition
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for LRE quenching within our model. In the next section, we
demonstrate numerically and analytically that this condition
is fulfilled in the case of isotropic 2D HO confining potential.

III. EXCITON FINE STRUCTURE OF QUASI-2DLAHO
QUANTUM DOT

In this section, we will investigate excitonic fine structure
for a model quantum dot in which the confining potential is
of 2D-like anisotropic harmonic-oscillator type. We note that
HO spectrum has been observed in self-assembled quantum
dots.31

The EMA equations for holes are

Ĥhh = −
1

2M�,hh
��x

2 + �y
2� +

1

2
M�,hh��x,hh

2 x2 + �y,hh
2 y2�

−
1

2M�,hh
�z

2 +
1

2
M�,hh�z,hh

2 z2,

�x,hh = �hh
0 �1 + t�, �y,hh =

�hh
0

1 + t
, �x,hh�y,hh = ��hh

0 �2

= const, �z,hh � �hh
0 , �20�

where M�,hh and M�,hh are effective masses, ����=x ,y ,z�

denotes confinement frequency in x, y, and z directions, re-
spectively, �hh

0 determines the typical energy scale of the
confining potential and, together with the mass and the con-
finement. The energies and lengths are expressed in the ef-
fective units.

EMA equations for electrons have a similar form

Ĥee = −
1

2
��x

2 + �y
2 + �z

2� +
1

2
��x,ee

2 x2 + �y,ee
2 y2 + �z,ee

2 z2� ,

�x,ee = �ee
0 �1 + t�, �y,ee =

�ee
0

1 + t
, �x,ee�y,ee = ��ee

0 �2

= const, �z,ee � �ee
0 . �21�

The excitonic fine structure is studied as a function of
anisotropy t. For example, for t=−0.5, �x= �1 /2��0, and
�y =2�0, the confinement along x is weaker than along y. For
t=0.5, �x= �3 /2��0, and �y =2 /3�0, confinement along x is
greater than along y. In the case t=0, the confining potential
for holes and electrons is isotropic in the lateral direction. By
changing anisotropy t, we control the shape of the confining
potentials for holes 
Eq. �20�� and electrons 
Eq. �21�� and,
as a consequence, the single-particle energy spectra and
eigenfunctions.

We have assumed that the confinement in the vertical di-
rection z is much stronger than confinement in the lateral
direction �z��0. Therefore, we will always assume the
ground-state solution in z direction and the single-particle
energy spectra for holes 
Eq. �20�� and electrons 
Eq. �21�� is
2D like,

E�n,m,0� = �n +
1

2
��x + �m +

1

2
��y +

1

2
�z, �22�

where n and m are 2DLAHO quantum numbers. In what
follows, we use numerical parameters M�,hh=9.930853,
M�,hh=5.218662, M�,ee=1.0, M�,ee=1.0, �z,hh=20.155737,
and �z,ee=105.185977.

The eigenfunctions are products of one-dimensional Her-
mite polynomials and exponential function,

�nm0�r� = �n�x��m�y��0�z� , �23�

where the eigenfunction in one of the Cartesian directions
�for example, x� is given by

�n�x� =� 1

2nn!
�m�x

�
�1/4

exp�−
m�x

2
x2�Hn��m�xx� ,

Hn�x� = �− 1�nexp�x2�
dn

dxnexp�− x2� . �24�

Figures 1�a�–1�d� show single-particle spectra for electrons
and holes, respectively, for two different characteristic en-
ergy scales �0. Solid horizontal line �around 52.6 and 10.1
hartree for electrons and holes, respectively� corresponds to
the confinement energy in vertical direction �z /2.

The single-particle energy spectra are given by Eq. �22�.
The single-particle ground state is the nodeless s envelope
which corresponds to n=m=0. The “excited” levels are or-
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FIG. 1. Single-particle and exciton energy levels as a function of
lateral anisotropy t of the confining potential.

EUGENE KADANTSEV AND PAWEL HAWRYLAK PHYSICAL REVIEW B 81, 045311 �2010�

045311-6



ganized in shells referred to as p, d, f , and so on with char-
acteristic “spatial” degeneracies of 2, 3, 4, etc., in the case of
isotropic �t=0� confinement potential. The dispersion E�t� of
s energy level with anisotropy is weak compared to the dis-
persion of excited envelopes. Strong anisotropy might lead to
the level crossing where the single-particle energy of d-type
envelope is below the single-particle energy of p-type enve-
lope. The level crossing happens, for example, at t�−0.3 for
the second excited state in Fig. 1�a�. Due to the smaller ef-
fective mass of electrons, the spacing between electron
single-particle levels is larger than that of the hole levels.

Figures 1�e� and 1�f� show “noninteracting” electron-hole
and “interacting” exciton energies as a function of lateral
anisotropy t for two different characteristic energy scales �0.
The black squares in Figs. 1�e� and 1�f� correspond to the
noninteracting electron-hole pair energies

v�q,v��r
c�s,c��p��v�q

h +�c�s
e �. The empty circles are obtained

by diagonalizing the full excitonic Hamiltonian. Each of the
empty circles is actually a multiplet of four exciton states
with fine structure determined by the electron-hole exchange
interaction. The noninteracting electron-hole and excitonic
spectra look quite similar. The Coulomb electron-hole attrac-
tion simply decreases the exciton energy. The Coulomb
attraction-induced mixing of electron-hole pairs in an exciton
is small due to the large separation of single-particle levels
compared with the magnitude of screened Coulomb attrac-
tion.

In the lower part of the interacting excitonic energy spec-
tra and for small anisotropies �t��0.2, the dispersion EX�t�
strongly resembles that of the dispersion of single-particle
levels. This happens because �hh

0 ��ee
0 and the lowest-

energy electron-hole pairs follow the order of hole levels
sesh, seph, and sedh.

A. LRE interaction for s-type envelopes

Consider the case when exciton is given by the product of
ground-state envelopes of electron and hole single-particle
states �sesh exciton�. In this case,

Fc
†�r�Fv�r� = NcNv exp�− 	xx

2 − 	yy
2 − 	zz

2� ,

Nc = �2	xc

�
�1/4�2	yc

�
�1/4�2	zc

�
�1/4

,

Nv = �2	xv

�
�1/4�2	yv

�
�1/4�2	zv

�
�1/4

,

	x = 	xc + 	xv, 	y = 	yc + 	yv, 	z = 	zc + 	zv,

	xc =
�x,ee

2
, 	yc =

�y,ee

2
, 	zc =

�z,ee

2
,

	xv =
M�,hh�x,hh

2
, 	yv =

M�,hh�y,hh

2
, 	zv =

M�,hh�z,hh

2
,

�25�

where Nc and Nv are normalization constants, 	�c and
	�v��=x ,y ,z� denote confinements of electrons and holes in
x, y, and z directions, respectively, and 	�=	�c+	�v denote
confinements of electron-hole envelope.

The matrix elements responsible for bright exciton split-
ting for sesh exciton are given by


12
LRE,N = �2�Rxx − 2iRxy − Ryy� ,


21
LRE,N = �2�Rxx + 2iRxy − Ryy� , �26�

where

Rxx =� � � �2Fc
†Fv

�x1
2 �Fc�r2�Fv

†�r2�
�r1 − r2�

dr1dr2 = −
�NcNv�2

	x	y	z
���Ix�	x,	y,	z� ,

Ix�	x,	y,	z� = �
0

�/2 �
0

�/2 sin3 � cos2 �d�d�

�sin2 �� 1

2	x
cos2 � +

1

2	y
sin2 �� +

1

2	z
cos2 �
3/2 ,

Ryy =� � � �2Fc
†Fv

�y1
2 �Fc�r2�Fv

†�r2�
�r1 − r2�

dr1dr2 = −
�NcNv�2

	x	y	z
���Iy�	x,	y,	z� ,

Iy�	x,	y,	z� = �
0

�/2 �
0

�/2 sin3 � sin2 �d�d�

�sin2 �� 1

2	x
cos2 � +

1

2	y
sin2 �� +

1

2	z
cos2 �
3/2 ,

Rxy =� � � �2Fc
†Fv

�y1 � x1
�Fc�r2�Fv

†�r2�
�r1 − r2�

dr1dr2 = 0. �27�
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It follows from Eq. �27� that 
12
LRE,N and 
21

LRE,N vanish
provided that the “confinement” of electron-hole pair enve-
lope is identical in x and y directions �	x=	y�. Figure 2
illustrates this. Figure 2 shows bright exciton doublet split-
ting as a function of lateral anisotropy t. The doublet splitting
energy is defined as EX

y −EX
x , where EX

x and EX
y are ground-

state bright exciton energy levels polarized along x and y
directions, respectively. For t�0��x��y�, EX

y �EX
x and the

bright ground state is dipole active along the x axis whereas
for t�0��x��y� the bright ground state is dipole active
along the y axis. In our model, the bright ground state is
always dipole active along the axis of weaker confinement.
The inset of Fig. 2 shows Rxx and Ryy nonlocal contributions
to LRE exchange as a function of anisotropy computed from
Eq. �27�. We can see that Rxx increases and Ryy decreases in
magnitude as t goes from −0.5 to 0.5. The inset also shows
the difference Rxx−Ryy which determines bright exciton split-
ting as a function of anisotropy. We can see that Rxx−Ryy
steadily decreases as a function of t and passes through zero
at t=0. t=0 corresponds to the laterally isotropic confining
potential. In this case, Ryy =Rxx and the exchange matrix el-
ement which couple two bright exciton levels vanishes. As a
result, the splitting between bright excitons vanishes as well.
We note, once again, that this result is obtained assuming
rotational symmetry C�v of the confining potential as well
the dipole-dipole nature of the LRE interaction which stems
from orthogonality of the electron and hole functions on the
unit-cell scale in bulk.

B. Application of lateral electric field

In the previous section, we have demonstrated that the
magnitude of the bright exciton exchange splitting can be
controlled through the shape of the confining potential. In
practice, one may, for example, try to quench the bright ex-
citon splitting by picking “symmetric” dots from a large

number of samples grown under different conditions.6 Nev-
ertheless, the growth of QD is essentially a random process
and control through the QD shape is hard to achieve.

It is, therefore, of great interest to examine the effects of
external fields on the excitonic fine structure. For example,
QDs can be placed2 between Schottky gates for the applica-
tion of vertical and lateral electric fields. Recently, it has
been demonstrated theoretically32 and experimentally13 that
by applying an in-plane electric field it is possible to fine-
tune photon cascades originating from recombination of mul-
tiexciton complexes in QDs.

The electron-hole exchange interaction was treated in Ref.
32 using empirical exchange Hamiltonian. This section dis-
cusses the effects of the lateral electric field on the exchange
matrix elements of our effective EMA Hamiltonian �18�. We
will focus on the bright exciton splitting as a function of the
lateral electric field.

Within our model, application of lateral electric field
F� =Fex+Fey of magnitude �F� displaces the “origin” of elec-
tron and hole envelopes in xy plane from �0,0� to �x0

e ,y0
e� and

�x0
h ,y0

h�, respectively. The single-particle energy levels are
rigidly shifted by the Stark shift whereas the spacing be-
tween the single-particle energy levels of HO is not affected.
The “separation” of electron and hole envelopes in xy plane
is determined by equations

�x0 = x0
e − x0

h = eF� 1

�x,ee
2 +

1

M�,hh�x,hh
2 � ,

�y0 = y0
e − y0

h = eF� 1

�y,ee
2 +

1

M�,hh�y,hh
2 � . �28�

Evaluating the integrals which control bright exciton
splitting Rxx�F�, Ryy�F�, and Rxy�F� as a function of field F
for sesh electron-hole envelope, we obtain

Rxx�F� = Rxx�0�exp�−
2	xc	xv

	x
�x0

2 −
2	yc	yv

	y
�y0

2� ,

Ryy�F� = Ryy�0�exp�−
2	xc	xv

	x
�x0

2 −
2	yc	yv

	y
�y0

2� ,

Rxy�F� = 0, �29�

where Rxx�0� and Ryy�0� are integrals 
Eq. �27�� in the ab-
sence of the electric field �F=0�. Field dependence of
Rxx�F�−Ryy�F� which determines the bright exciton splitting
is shown in Fig. 3 for five different initial values of lateral
anisotropy. At F=0, the bright exciton splitting attains maxi-
mum value which is determined by the initial shape aniso-
tropy of the confining potential. The larger the magnitude of
the anisotropy, the larger is the initial �F=0� bright exciton
splitting. As F increases in magnitude, the electron and hole
envelopes are pulled out in opposite direction and the mag-
nitude of the splitting is reduced. Since the separation be-
tween the envelopes depends on F2, the splitting is indepen-
dent of the sign of the field F.

It is interesting to note that the “rate of quenching” of the
splitting depends on the initial anisotropy—the stronger the
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circles� difference of two nonlocal LRE contributions that deter-
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confinement, the larger is the drop in the magnitude of the
splitting. One can use lateral electric field to produce two
identical bright exciton splittings for two dots with different
initial anisotropies. This happens, for example, at �F��0.6
for two dots with initial anisotropies of t=−0.5 and t=−0.4,
respectively.

C. Scaling of bright exciton splitting

The question of size scaling of exchange interactions in
nanosystems has received a lot of attention, particularly, in
connection with the Stokes �“red”� shift of resonant PL spec-
tra with respect to the absorption edge �see, for example,
Ref. 19�. In this section, we examine the size scaling of
bright exciton splitting as a function of system’s size.

Suppose that R is a characteristic size of a 2D-like system.
From the normalization condition

� dr�Fc�r��2 = 1, � dr�Fv�r��2 = 1, �30�

envelope functions scale as 1 /R2. Based on this “normaliza-
tion” argument, the nonlocal LRE integrals Rxx, Ryy, and Rxy
that determine bright exciton splitting scale as

1

R2

1

R2

1

R

1

R2R2R2 �
1

R3 . �31�

The dependence 
Eq. �31�� is expected to hold in the
strong confinement regime. Of course, one has to keep in
mind that the exchange matrix element responsible for the
bright exciton splitting is a linear combination of nonlocal
LRE integrals Rxx, Ryy, and Rxy. Therefore, the actual size
dependence of bright exciton splitting might be different
from 1 /R3 and depend strongly on the “nature” of the enve-
lope functions involved in the LRE integrals.

We will examine the bright exciton splitting as a function
of the confinement length squared l2=1 / �M��

0�. The ratio of
electron and hole confinement frequencies is kept constant
�ee

0 /�hh
0 =const and the lateral anisotropy t is fixed. Since

�ee
0 /�hh

0 =const, by increasing/decreasing �ee
0 we automati-

cally increasing/decreasing �hh
0 .

Figure 4 shows the scaling of the splittings for the ground
and excited bright exciton levels with size. The lateral aniso-
tropy is fixed to t=−0.1 in all the calculations. We find that
splittings decay as the size of the system increases. We find
that the ground-state exciton splitting is size insensitive
whereas the splittings of the excited bright excitons scale
�1 /R1.3. This scaling is different from 1 /R3 dependence ex-
pected from the normalization arguments 
Eq. �31��. The de-
viation might be due to the fact that the exchange matrix
elements that determine the bright exciton splitting 
12 and

21 involve a linear combination of nonlocal exchange inte-
grals Rxx, Ryy, and Rxy. Moreover, Rxx and Ryy enter the ex-
pression for 
12 and 
21 with different sign and some cancel-
lation of terms may occur. Therefore, the size dependence of
bright exciton splittings may depend strongly on the details
of the excitonic wave function.

IV. CONCLUSIONS

A four-band electron-hole excitonic Hamiltonian is de-
rived within the EMA which takes into account the electron-
hole exchange interaction. The matrix elements of the effec-
tive Hamiltonian are expressed explicitly in terms of electron
and hole envelopes. The microscopic parts of single-particle
orbitals are integrated out and enter our Hamiltonian implic-
itly through numerical parameters. The matrix element re-
sponsible for the bright exciton splitting is identified and
analyzed. An explicit expression for this matrix element in
terms of electron and hole envelopes is presented. An exci-
tonic fine structure for a model system with 2D-like aniso-

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

R
xx

−
R

yy
(E

ff.
U

ni
ts

)

[Field F (Eff.Units)]

Field−dependence of LRE (ωhh
0=0.73,ωee

0=2.30)

t=−0.5
t=−0.4
t=−0.3
t=−0.2
t=−0.1

FIG. 3. Nonlocal LRE Rxx−Ryy which determines bright exciton
splitting as a function of lateral electric field F. At F=0, Rxx−Ryy

attains maximum determined by the initial anisotropy of the confin-
ing potential. As magnitude of field F increases, Rxx−Ryy decreases
due to the separation of electron and hole envelopes.

0.00

5.00

10.00

15.00

20.00

0.3 0.35 0.4 0.45 0.5 0.55

S
pl

itt
in

g
(1

0−
3

H
)

1/(Meeωee
0) (t=−0.1)

Bright Exciton Splitting vs. 1/(Meeωee
0)

se sh
se dh
se dh

FIG. 4. Size scaling of the bright exciton doublet splittings.
Lateral anisotropy is kept constant t=−0.1. The doublet splittings
are plotted as a function of 1 / �M�,ee�ee

0 �. The ratio �ee
0 /�hh

0 is kept
constant. The ground exciton is of se−sh type. Two excited bright
excitons correspond to se−dh electron-hole pairs. The solid lines are
fit to the power law C /Rn, where C is a constant, n�1.30.

THEORY OF EXCITON FINE STRUCTURE IN… PHYSICAL REVIEW B 81, 045311 �2010�

045311-9



tropic HO confining potential is considered. It is found that
in the case of 2D isotropic potential, the bright exciton split-
ting vanishes. Within the formalism of our effective exci-
tonic Hamiltonian, the effects of the lateral electric field on
the excitonic fine structure were considered. It is found that
the excitonic structure can be tuned with lateral electric field
and that the magnitude of the exchange splitting is reduced.
The origin of this reduction is the spatial separation of
electron-hole pairs by electric field. Finally, size dependence
of the bright exciton splittings for the ground- and excited-
state excitons was investigated and it was found that the size

scaling of bright exciton splitting can be different from the
laws established using normalization conditions.
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